A Deep Learning Approach for Pneumonia Detection Using Chest X-Ray Images
Students & Supervisors
Student Authors
Supervisors
Abstract
Pneumonia,which isanacute respiratory infectiousdisease thataffectsoneor bothlungs inhumans, iscausedbybacteriacalledStreptococcuspneumoniae (alsoknownaspneumococcus). It isoneof themaincausesofdeathglobally, and Pneumonianeedstobediagnosedimmediatelyandcorrectly.Priorstudieshaveex ploreddeeplearningmodelssuchasCheXNet,VGG16,Xception, andResNet-RS. However,manyoftheseapproachesdonotsimultaneouslycapturebothspatialand contextual features,andoftenprovide limitedinterpretabilitythroughvisualization methodssuchasGrad-CAM.Toaddressthesechallenges,weproposeahybriddeep learningmodelthatcombinesResNet-18andtheSwinTransformerisusedtoattain higheraccuracyandreducetimedelay.ResNet-18captures important featuresand model sequenceswell fromdatasets. Italsoemploys thecomputational capacityof SwinTransformerinclassificationcomparedtothosefeatures,whichismoreflexible thanotherdeep learning structures.Gradient-weightedClassActivationMapping (Grad-CAM)isalsobeingusedtointerpretthemodels.Theproposedapproachgot anaccuracyof93.75%.Theabilitytofocusonlungregionsbyemphasizingmodel attentionhelpsmodeldecision-makinginterpretability.Thisresearchcontributesto thegrowingbodyofworkinAI-baseddiagnosticsolutions,emphasizinginterpretabil ityandclinical relevance.Thismodel isalightweightdeeplearningmodel thatwill mitigatetheselimitationsandcreateanefficientPneumoniadetectionsystem
Keywords
Publication Details
- Type of Publication:
- Conference Name: 3rd International Conference on Big Data, IoT and Machine Learning (BIM 2025)
- Date of Conference: 25/09/2025 - 25/09/2025
- Venue: Dhaka International University, Bangladesh